Syllabus Module Dept. Of Mathematics Session : 2018-2019 Khatra Adibasi Mahavidyalaya

	Semester -1				
COURSE	COURSE	COURSE TOPIC	Teachers		
CODE	TITLE				
SH/MTH/ 101/C-1	Calculus, Geometry & Differential Equation	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	AI		
		Unit 2 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (logx)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics.	AI		
		Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics	SD		

		using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.	
		Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	SD
SH/MTH/ 102/C-2	Algebra	Unit 1 Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, Transformation of equation, Descartes rule of signs, Cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.	MN
		Unit 2Equivalence relations. Functions,Composition of functions,Invertible functions, One to onecorrespondence and cardinality ofa set. Well-ordering property of	MN

		positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic. Unit 3 Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. Unit 4	MN
		Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix. Cayley- Hamilton theorem and its use in finding the inverse of a matrix	
SH/MTH/ 103/GE-1	Calculus, Geometry & Differential Equation (GE T1)	Unit 1 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of types $e^{ax+bsinx}$, $e^{ax+bcosx}$, $(ax + b)^n sinx$, $(ax + b)^n cosx$, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.	AI
		Unit 2	AI

COURSE CODE	COURSE TITLE	COURSE TOPIC	Teachers
	SEN	MESTER – II	
		Techniques of sketching conics. Unit 3 Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of graphing standard quadric surfaces like cone, ellipsoid. Unit 4 Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.	SD
		Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sin^n x dx$, $\int cos^n x dx$, $\int tan^n x dx$, $\int sec^n x dx \int (log x)^n dx$, $\int sin^m x cos^n x dx$, parametric equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of revolution.	

202/C-4	Equations and	Lipschitz condition and Picard's	
	Vector	Theorem (Statement only).	
		General solution of homogeneous	
	Calculus	equation of second order, principle	
		of super position for homogeneous	
		equation, Wronskian: its properties	
		and applications, Linear	
		homogeneous and non-	
		homogeneous equations of higher	
		order with constant coefficients,	
		Euler's equation, method of	
		undetermined coefficients, method	
		of variation of parameters.	
		Unit 2	CD
		Systems of linear differential	
		equations, types of linear systems,	
		differential operators, an operator	
		method for linear systems with	
		constant coefficients,	
		Basic Theory of linear systems in	
		normal form, homogeneous linear	
		systems with constant	
		coefficients: Two Equations in two	
		unknown functions.	
		Unit 3	CD
		Equilibrium points, Interpretation	
		of the phase plane	
		Power series solution of a	
		differential equation about an	
		ordinary point, solution about a	
		regular singular point.	
		Unit 4	CD
		Triple product, introduction to	
		vector functions, operations with	
		vector-valued functions, limits and	
		continuity of vector functions,	
		differentiation and integration of	
		vector functions.	
SH/MTH/	Real Analysis	vector functions. Unit 1	AI
SH/MTH/ 203/GE-2	Real Analysis (GE T3)	vector functions. Unit 1 Review of Algebraic and Order	AI
	_	vector functions. Unit 1 Review of Algebraic and Order Properties of R, ε -neighbourhood	AI
	_	vector functions. Unit 1 Review of Algebraic and Order Properties of R, ε -neighbourhood of a point in R. Idea of countable	AI
	_	vector functions. Unit 1 Review of Algebraic and Order Properties of R, ε -neighbourhood	AI

		above sets, Bounded below sets,	
		Bounded Sets, Unbounded sets.	
		Suprema and Infima.	
		Completeness Property of R and	
		its equivalent properties. The	
		Archimedean Property, Density of	
		Rational (and Irrational) numbers	
		in R, Intervals. Limit points of a	
		set, Isolated points, Open set,	
		closed set, derived set,	
		Illustrations of Bolzano-	
		Weierstrass theorem for sets,	
		compact sets in R, Heine-Borel	
		Theorem.	
	-	Unit 2	MN
		Sequences, Bounded sequence,	
		Convergent sequence, Limit of a	
		sequence, lim inf, lim sup. Limit	
		Theorems. Monotone Sequences,	
		Monotone Convergence Theorem.	
		Subsequences, Divergence	
		Criteria. Monotone Subsequence	
		Theorem (statement only),	
		Bolzano Weierstrass Theorem for	
		Sequences. Cauchy sequence,	
		Cauchy's Convergence Criterion.	
		Unit 3	MN
		Infinite series, convergence and	
		divergence of infinite series,	
		Cauchy Criterion, Tests for	
		convergence: Comparison test,	
		Limit Comparison test, Ratio Test,	
		Cauchy's nth root test, Integral	
		test. Alternating series, Leibniz	
		test. Absolute and Conditional	
		convergence.	
	SEMI	ESTER – III	
COURSE CO		ESTER – III COURSE TOPIC	Teachers
COURSE CO CODE TIT	URSE		Teachers

301/C-5	Functions & Introduction to Metric Space	Limits of functions ($\varepsilon - \delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem. Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem to inequalities and approximation of polynomials.	MN
		Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln(1 + x)$, $\frac{1}{ax+b}$ and $(1 + x)$. Application of Taylor's theorem to inequalities.	MN
		Unit 4 Metric spaces: Definition and	SD

		Unit 2	SD
	Methods Lab	Truncation.	
-	Numerical	Relative, Absolute. Round off.	
/303/C-7	Methods	Algorithms. Convergence. Errors:	
SH/MTH	Numerical	Unit 1	SD
		Third isomorphism theorems.	
		isomorphisms. First, Second and	
		of homomorphisms, Cayley's theorem, properties of	
		Group homomorphisms, properties	
		Unit 5	AI
		theorem for finite abelian groups.	
		subgroups, factor groups, Cauchy's	
		number of groups, normal	
		External direct product of a finite	
		Unit 4	AI
		including Fermat's Little theorem.	
		theorem and consequences	
		properties of cosets, Lagrange's	
		permutations, alternating group,	
		permutations, even and odd	
		permutations, properties of	
		cyclic groups. Cycle notation for	
		classification of subgroups of	
		Properties of cyclic groups,	
		Unit 3	AI
		subgroups.	
		subgroups, centralizer, normalizer, center of a group, product of two	
		Subgroups and examples of	
		Unit 2	AI
		properties of groups.	
		(through matrices), elementary	
		groups and quaternion groups	
		groups including permutation	
		groups, definition and examples of	
302/ C-6	1	Symmetries of a square, Dihedral	
SH/MTH/	Group Theory-	Unit 1	AI
		dense sets, separable spaces.	
		set, diameter of a set, subspaces,	
		of a set. Limit point of a set, closed	
		neighbourhood, open set, interior	

		Transcendental and Polynomial equations: Bisection method,	
		Newton's method, Secant method,	
		Regula-falsi method, fixed point	
		iteration, Newton-Raphson	
		method. Rate of convergence of these methods.	
		Unit 3	
			SD
		System of linear algebraic equations: Gaussian Elimination	
		and Gauss Jordan methods. Gauss	
		Jacobi method, Gauss Seidel	
		method and their convergence	
		analysis. LU Decomposition	
		Unit 4	ΝΛΝΙ
		Interpolation: Lagrange and	MN
		Newton's methods. Error bounds.	
		Finite difference operators.	
		Gregory forward and backward	
		difference interpolation.	
		Numerical differentiation: Methods	
		based on interpolations, methods	
		based on finite differences.	
		Unit 5	MN
		Numerical Integration: Newton	
		Cotes formula, Trapezoidal rule,	
		Simpson's 1/3rd rule, Simpsons	
		3/8th rule, Weddle's rule, Boole's	
		Rule. Midpoint rule, Composite	
		Trapezoidal rule, Composite	
		Simpson's 1/3rd rule, Gauss	
		quadrature formula.	
		The algebraic eigenvalue problem:	
		Power method.	
		Approximation: Least square	
		polynomial approximation.	
SH/MTH /	Algebra	Unit 1	SD
304/GE-3	(GET2)	Polar representation of complex	
		numbers, nth roots of unity, De	
		Moivre's theorem for rational	
		indices and its applications.	
		Theory of equations: Relation	
	1	hat we are used and she fit at and	
		between roots and coefficients,	

		Descartes rule of signs, Cubic and	
		biquadratic equation.	
		Inequality: The inequality involving	
		AM≥GM≥HM, Cauchy-Schwartz	
		inequality.	
		Unit 2	SD
		Equivalence relations. Functions,	
		Composition of functions,	
		Invertible functions, One to one	
		correspondence and cardinality of	
		a set. Well-ordering property of positive integers, Division	
		algorithm, Divisibility and	
		Euclidean algorithm. Congruence	
		relation between integers.	
		Principles of Mathematical	
		Induction, statement of	
		Fundamental Theorem of	
		Arithmetic.	
		Unit 3	MN
		Systems of linear equations, row	
		reduction and echelon forms,	
		vector equations, the matrix	
		equation	
		Ax = b, solution sets of linear	
		systems, applications of linear	
		systems, linear independence.	
		Unit 4	MN
		Introduction to linear	
		transformations, matrix of a linear	
		transformation, inverse of a matrix,	
		characterizations of invertible	
		matrices. Subspaces of R ⁿ ,	
		dimension of subspaces of R ⁿ , rank	
		of a matrix, Eigen values, Eigen	
		Vectors and Characteristic	
		Equation of a matrix. Cayley-	
		Hamilton theorem and its use in	
		finding the inverse of a matrix	
SH/MTH /	Programming		AI
305/SEC-1	using C (New)		
			1

SEMESTER - IV				
COURSE	COURSE	COURSE TOPIC	Teachers	
	TITLE			
CODE SH/MTH /401/C-8	Riemann Integration and Series of Functons	Unit 1 Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals. Fundamental theorem of Integral Calculus.	AI	
		Unit 2 Improper integrals. Convergence of Beta and Gamma functions.	AI	
		Unit 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test.	AI	
		Unit 4 Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's	CD	

		inequality, Parseval's identity,	
		Dirichlet's condition.	
		Examples of Fourier expansions	
		and summation results for series.	
		Unit 5	CD
		Power series, radius of	
		convergence, Cauchy Hadamard Theorem.	
		Differentiation and integration of	
		power series; Abel's Theorem;	
		Weierstrass Approximation	
		Theorem.	
SH/MTH/402/C-	Multivariate	Unit 1	MN
9	Calculus	Functions of several variables,	
J	Calculus	limit and continuity of functions of	
		two or more variables	
		Partial differentiation, total	
		differentiability and	
		differentiability, sufficient	
		condition for differentiability.	
		Chain rule for one and two	
		independent parameters,	
		directional derivatives, the	
		gradient, maximal and normal	
		property of the gradient, tangent	
		planes, Extrema of functions of	
		two variables, method of Lagrange	
		multipliers, constrained	
		optimization problems	
		Unit 2	MN
		Double integration over	
		rectangular region, double	
		integration over non-rectangular	
		region, Double integrals in polar	
		co-ordinates, Triple integrals,	
		Triple integral over a	
		parallelepiped and solid regions.	
		Volume by triple integrals,	
		cylindrical and spherical co- ordinates. Change of variables in	
		double integrals and triple	
		integrals	
		Unit 3	ΔΙ
		Definition of vector field,	AI

SH/MTH	Differential	Unit 1	CDG
		Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.	
		Unit 3 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Unit 4	CD
		Unit 2 Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.	MN
SH/MTH /403/C-10	Ring Theory and Linear Algebra-I	divergence and curl. Line integrals, Applications of line integrals: Mass and Work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Unit 4 Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem. Unit 1 Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	AI

	Vector	Theorem (Statement only).	
	Calculus	General solution of homogeneous	
		equation of second order, principle	
	(GET4)	of super position for homogeneous	
		equation, Wronskian: its properties	
		and applications, Linear	
		homogeneous and non-	
		homogeneous equations of higher	
		order with constant coefficients,	
		Euler's equation, method of	
		undetermined coefficients, method	
		of variation of parameters.	
		Unit 2	CDG
		Systems of linear differential	
		equations, types of linear systems,	
		differential operators, an operator	
		method for linear systems with	
		constant coefficients,	
		Basic Theory of linear systems in	
		normal form, homogeneous linear	
		systems with constant	
		coefficients: Two Equations in two	
		unknown functions.	
		unknown functions. Unit 3	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions,	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of	
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	CDG
SH/MTH /	Graph Theory	unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1	
SH/MTH / 405/SEC-2	Graph Theory (SEC T4)	unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1 Definition, examples and basic	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1 Definition, examples and basic properties of graphs, pseudo	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs,	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi - partite graphs isomorphism of	CDG
		unknown functions. Unit 3 Equilibrium points, Interpretation of the phase plane Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit 4 Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs,	CDG

	Unit 2Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,Unit 3Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.	MN
3 RD	YEAR	

Part –III	Paper – V	Group – A	MN
	_	Analysis – III (50 marks)	
		Sequence of real numbers. Notion of convergence and	
		limit. Monotone sequences subsequences and their	
		convergence, upper and lower limits of a sequence,	
		algebra of limit superior and limit inferior. Cauchy's	
		general principle of convergence. Bolzano-	
		Weierstrass theorem, Heine-Borel theorem. Series of	
		non negative terms. Test for convergence:	
		Comparison test, Ratio test, Cauchy's root	
		test, Raabe's test, Logarithmic test, Gauss's test,	
		Cauchy's condensation test. Alternating series,	
		Leibnitz's test. Series of arbitrary numerical terms.	
		Absolutely and conditionally convergent series,	
		Riemann's rearrangement theorem (Proof not	
		required) Sequences and series of functions and their	
		convergence. Uniform convergence. Cauchy's criterion	
		of uniform convergence. Continuity of a limit function	
		of a sequence of continuous functions. Continuity of	
		the sum function of a uniformly convergent series of	
		continuous functions. Term-by-term differentiation	
		and integration of a uniformly convergent series of	
		functions. Fourier series of a function. Dirichlet's	
		condition (statement only). Uniformly convergent	
		trigonometric series as a Fourier series. Riemann-	
		Lebesgue theorem on Fourier series. Series of odd	
		and even functions. Convergence of Fourier series of	
		piece-wise monotone functions (Proof not required)	
		Functions of several variables (two and three	
		variables): Theory of maxima and minima, Lagrange's	
		method of multiplier. Jacobian, Implicit function	
		theorem (Proof not required). Inverse function	
		theorem (statement only). Change of variables of	
		multiple integrals. Differentiation and integrals under	
		the sign of integration. Integral as a function of	
		parameter. Change of order of integration for	
		repeated integrals	

Group-B	MN
Complex Analysis (20 Marks)	
Introduction of complex numbers as ordered pair of	
real numbers (a , b) and their representation as $a + ib$,	
the complex plane ${\mathbb C}$ and its basic geometric and	
topological aspects, continuity, differentiability of	
complex valued functions, Cauchy-Riemann (C-R)	
equations, analytic functions. Power series, radius of	
convergence and Cauchy-Handamard theorem,	
infinite differentiability of sum function of power	
series, introduction of exp (z), cosz, sinz, logz and its	
branch-their elementary properties. Extended	
complex plane \mathbb{C}_{∞} , stereographic projection and	
spherical representation of ℂ∞.Bilinear	
transformations: The group of Mobius transformation	
and its generators-the inversion, dilations; fixed point	
and uniqueness of a Mobius transformation by its	
action at three distinct points; cross ratio, cross ratio	
and circle preserving property of Mobius	
transformation; orientation principle and construction	
of bijective analytic functions from one side of a circle	
onto one side of another circle in \mathbb{C}^{∞} .	
Group-C	MN
Metric Spaces (30 Marks)	
Definition of Metric spaces, examples including the	
standard ones such as discrete metric space, the real	
line \mathbb{R} , the complex plane \mathbb{C} , Euclidian spaces \mathbb{R}^{nn} ,	
unitary spaces \mathbb{C}_{nn} , (with sup metric and integral	
metric), . Open ball, closed ball, metric topology,	
distance between a point and a set, distance between	
two sets, boundedness of a set, properties of open	
and closed sets, limit point, interior point, closure,	
interior, boundary of subsets and relation between	
them; dense subsets, nowhere dense subsets, basis,	
separable space, LindelÖf space, second countable	
space and relation between them; Hausdorff property,	
Cauchy sequence, Convergence of sequences,	
Cauchy sequence, convergence of sequences,	

	completeness and Cantor Intersection theorem.	
	Continuous functions and their basic properties,	
	algebra of real/ complex valued continuous	AI
Paper – VI	Group –A	AI
	Elements of Continuum Mechanics (10 Marks)	
	Idea of continuum, idea of strain and stress at a point	
	in a continuum, stress vector, stress matrix, ideal	
	fluid, viscous fluid.	
	Group – B	AI
	Classical Dynamics, Dynamics of a system of	
	Particles and rigid body (40 Marks)	
	Physical foundation of classical dynamics:	
	Interpretation of Newton's laws of motion – body force	
	and surface force with examples, inertial frames, law	
	of superposition, closed systems, concepts of	
	absolute time, concepts of absolute space, concepts	
	of absolute simultaneity of events; Galilean	
	transformation – form invariance of Newton's laws	
	under Galilean transformation, limitations of direct	
	applications of Newton's laws in solving problems of	
	mechanics. Dynamics of a system of particles: Basic	
	concepts, Centroid, linear momentum, angular	
	momentum, kinetic energy, potential energy, work,	
	power, conservative system of forces; Use of centroid	
	– motion relative to the centroid, angular momentum	
	and kinetic energy relative to the centroid;	
	Conservation principles – linear momentum, angular	
	momentum, total energy; Constraints – basic concepts	
	with examples, D'Alembert Principle.	
	Introduction to rigid body dynamics: Moments and	
	product of inertia – basic concepts, radius of gyration,	
	parallel and perpendicular axis theorems, a few	
	examples (rod, rectangular plate, circular plate, elliptic	
	plate, sphere, cone, rectangular parallelepiped,	
	cylinder, ellipsoid of revolution etc.); Motion about a	
	point and about fixed axes – angular momentum,	
	inertia matrix, principal axes, principal moments of	

sphere (solid and hollow) along a perfectly rough	
plane, motion of a uniform heavy circular cylinder	
(solid and hollow) along a	
Group – C	SD
Statics (20 Marks)	
Prerequisite: [Basic concepts – concurrent forces,	
parallel forces, moment of a force, couple, resultant of	
a force and a couple]. Forces in three-dimension –	
reduction to force and couple, Pointsot's central axis,	
wrench, pitch, screw, conditions of equilibrium,	
invariants; Virtual work – concept of virtual	
displacement, principle of virtual work, simple	
examples; Stability of equilibrium – stable and	
unstable equilibrium, energy test of stability,	
determination of positions of equilibrium, stability of a	
heavy body resting on a fixed body with smooth	
surfaces, simple examples; Equilibrium of flexible	
string – general equations of equilibrium of a uniform	
flexible string under the action of given coplanar	
forces, common catenary, parabolic chain, suspension	
bridge, catenary of uniform strength.	
Group – D	SD
Hydrostatics (30 Marks)	
-	
Basic concepts – fluid pressure and its elementary	
properties (such as in equilibrium it is same in every	
properties (such as in equilibrium it is same in every direction), density, specific gravity, compressible and	
properties (such as in equilibrium it is same in every	

· · · · · · · · · · · · · · · · · · ·			,
		equilibrium, pressure gradient, equipressure surface,	
		equilibrium of fluid rotating uniformly about an axis;	
		Pressure in a heavy homogeneous liquid – thrust on a	
		plane surface, centre of pressure, determining the	
		position of the centre of pressure, effects on	
		increasing depth, thrust on a curved surface,	
		buoyancy, Archimedes principle, resultant thrust,	
		Equilibrium of floating bodies – conditions of	
		equilibrium of a freely floating body, body floating	
		under constraints, equilibrium of fluids revolving	
		uniformly about an axis, stability of equilibrium,	
		metacentre, conditions of stability; Gases – relation	
		among pressure, volume and temperature, Boyle's	
		law, Charle's law, ideal gas, isothermal and adiabatic	
		changes, heat capacities, internal	
	Paper – VII	Group-A	AI
		Mathematical Probability (40 Marks)	
		Prerequisite: [Concept of mathematical probility,	
		addition and multiplication theorem of probability.	
		Independent event, total probability, Bayes' theorem,	
		Bernoulli trials, Binomial distribution].	
		Generalised addition and multiplication rule of	
		probability continuity theory, Boole's inequality,	
		Bonferroni's inequality; Poisson trials and Poisson law	
		of probability, Multinomial law; Random variables,	
		Discrete and continuous distribution functions:	
		Poisson, Geometric, Negative Binomial, exponential,	
		Hypergeometric, Uniforn, Normal, Gamma, Beta,	
		Cauchy distributions,	
		Group -B	AI
		Statistics (20 Marks)	
		Method of least square, curve fitting (straight line,	
		parabola and exponential curves). Sampling theory,	
		simple random sampling, sampling distribution of the	
		statistic; , and -distribution of the statistic. Theory of	
		estimation, point estimation, unbiasedness, minimum	
		variance, consistency, efficiency, sufficiently,	
		maximum likelihood method; Interval estimation –	
			•

	Percentage errors: Inherent errors in numerical methods. Polynomial Interpolations: Existence and uniqueness of interpolating polynomials, error in interpolation, Lagrange's interpolating formula, Newton's divided difference interpolating formula, properties of divided differences, forward and backward difference operators and their relations, Newton's forward and backward difference interpolation formulae. Central difference and averaging operators, central interpolation formulae: Statement of Gauss, Stirling and Bessel's formulae and their applications. Concept of piece-wise	
Paper – VIII	Group A Numerical Analysis (35 Marks) Approximation of numbers, significant digits, Loss of significance, Algebraic manipulation for avoiding loss of significance. Errors: Absolute, Relative and	CD
	confidence interval, approximate confidence interval. Testing of hypothesis, Neyman-Pearson lemma, Likelihood ratio testing, application to Normal(m,)- population, Pearsonian -test for goodness of fit. Theory of errors 2 Group – C Operations Research (Marks - 40) Prerequisite: [General introduction to optimization problem, Definition of L.P.P., Mathematical formulation of the problem, Canonical & Standard form of L.P.P., Basic solutions, feasible, basic feasible & optimal solutions]. Reduction of a feasible solution to basic feasible solution. Hyperplanes, Convex sets and their properties, Convex functions, Extreme points, Convex feasible region, Convex polyhedron, Polytope, Supporting hyperplane, Separating hyperplane. Fundamental theorem of L.P.P., Replacement of a basis vector, Improved basic feasible solutions, Unbounded solution, Condition of optimality, Simplex method, Simplex algorithm, Artificial	SD

	(using C programming) (Marks: 50) Sessional (Algorithm, Flowchart and Program with output) : 10 marks	
Paper-IX	Computer Aided Numerical Methods: Practical	AI
	purpose of sub-program, Definition of function and function prototype, Simple programs.	
	one dimensional subscripted variable in C, Simple programs. Sub-program: Concept of sub-program,	
	array variables in programming language, Rules for	
	simple programs. Subscripted variables: Concept of	
	in C, break continue and goto statements, Example of	
	Statements: Decision making and Looping statements	
	Assignment statements, I/0 – statements. Control	
	constants and variables operators, Expressions,	
	Character set, Keywords, Basic data types, Numeric	
	octal and hexadecimal number systems and their conversions. Programming Language in C: C-	
	Object programs. Number Systems: Binary, decimal,	
	High-level language, Interpreter, Compiler, Source and	
	languages, Machine language, Assembly language,	
	Computer Language: Concept of programming	
	Computer Programming (Marks – 15)	
	Group-B	CD
	methods with convergence criteria.	
	methods, Pivoting methods, Jacobi and Gauss-Seidel	
	equation: Gauss' Elimination and Gauss Jordan	
	methods. Solution of a system of linear algebraic	
	Convergences and rate of convergence of these	
	Method (v) Fixed point iteration method.	
	Method (iii) Secant Method (iv) Newton – Raphson	
	only): (i) Method of Bisection, (ii) Regula Falsi	
	of algebraic and transcendental equations (real roots	
	Numerical solution of non-linear equations: Solution	